Triangle-based Explorations
 Module 5

A stick of uncooked spaghetti is broken into three pieces by picking two points independently and uniformly along the stick, and breaking the stick at those two points. What is the probability that the three pieces can be assembled to form a triangle?

What parameters need to be defined in order to form a triangle with the three segments?

- Classification of problems is not a productive way of thinking about instruction.
- Problem-solving tasks can become accessible to all children if different approaches and techniques are used.
- Technology affords the space for conjecturing and testing so students can draw their own inferences.

Extension:
 Given three random points on a circle, what is the probability that they lie in the same semicircle?

Extension:

Three legs are positioned uniformly and independently on the perimeter of a round table. What is the probability that the table will stand?

Consider the following questions:

The area of the rectangle is 1 square inch. Describe how the area of triangle $A B C$ would change when A moves along the side of the rectangle.

Mathematics Teaching Institute July 27-31, 2015

Student Work Sample \#
$A B C D$ is a trapezoid with $A B$ parallel to $D C$. The diagonals $A C$ and $B D$ intersect at O. Make a few conjectures about the four triangles formed inside trapezoid ABCD. Explain how you arrived at these conjectures.

[^0]Mathematics Teaching Institute July 27-31, 2015

Student Work Sample \#

Dinglei claims that $\triangle C O B$
and $\triangle A D O$ have the same area, and $\triangle D O C$ and $\triangle A O B{ }^{A}$ are similar. However, she does not provide an explanation for her claims. Offer an explanation for why
 you believe she is right or wrong in each case.

Mathematics Teaching Institute July 27-31, 2015

Student Work Sample \#

The area of the rectangle is 1 square inch. Assuming $\triangle A B C$ shares the side $B C$ with the rectangle, and vertex A of the triangle remains on the opposite side of $B C$, is it possible for the area of $\triangle A B C$ to be larger than one half of the area of the rectangle?

Mathematics Teaching Institute July 27-31, 2015

Student Work Sample \#

[^0]: Sponsored by Ohio $\left.\right|_{\text {of Education }} ^{\text {Deparment }}$10

